
Lower bounds for comparison based algorithms
for selection of maximum, minimum, second
smallest element, the median and sorting

Jørgen Bang-Jensen

Imada, SDU

21. april 2021

1 Introduction

The purpose of this note is to prove lower bounds for the number of com-
parisons of numbers which every algorithm must make in order to determi-
ne both the maximum and the minimum element, respectively the second
smallest element, respectively the median. Such lower bounds are already
discussed in the copy of Chapter 3 from the book the book by Baase. Here
the lower bounds are established by showing how an adversary may generate
bad input for any algorithm by following certain rules (which among other
things involves assignment of values to the elements and possibly changing
these values while the data set is still under construction).

One weakness of this way of formulating the adversary’s strategy is that
it may be confusing that the values of the elements are changing during the
construction. Hence, even though it is intuitively clear that the method wor-
ks, one is left with a feeling of not really having seen a real proof for the
lower bound. In these notes we do obtain precise proofs of the lower bounds
by formulating the adversary’s strategy as that of forming an acyclic partial
orientation of a complete graph. The orientation is constructed concurrent-
ly with the execution of the algorithm for which the lower bound is being
established (that is, one arc is oriented for each comparison that is made by
the algorithm) and no orientation will ever be changed after it is assigned to
an edge. Only at the very end of the process the actual values of the elements

1

2

are decided, based on the final acyclic partial orientation when the algorithm
terminates. As we shall show below, using the orientation at that time, the
adversary can easily assign values to the elements in such a way that all com-
parisons made by the algorithm receive a valid answer. In fact, the adversary
can always use the numbers {1, 2, . . . , n} when producing a bad input of size
n. Thus we can obtain a lower bound for the number of comparisons which
must be made by the algorithm, provided that we can argue that this many
arcs must always be oriented for a unique answer to exist. Finally we also
show how to produce an adversary which will force any comparison based
sorting algorithm to make at least 1

2
nlogn comparisons on some input of size

n (constructed by the adversary).

2 Some terminology and notation

We denote a digraph by D = (V,A) where V is the set of vertices and A
the set of arcs. We may also use the notation V (D) for the set of vertices
and A(D) for the set of arcs of D. An arc from a vertex u to a vertex v is
denoted u→v. We say that the arc starts in u and ends in v. For every
vertex x ∈ V (D) we denote by d+D(x) (d

−

D(x)) the number of arcs which start
(end) in x. We also use dD(x) for the total number of arcs in D which are
incident with the vertex x. Thus dD(x) = d+D(x) + d−D(x). The complete

graph Kn is the unique graph (up to isomorphism) on n vertices in which
every par of distinct vertices is joined by an edge.

An out-arborescence is an orientation of a tree such that every vertex
except one (called the root) has precisely one arc ending in it. No arc ends
in the root and it is easy to show that if r is the root in an out-arborescence
T , then r can reach every other vertex x ∈ V (T) by a directed path (Exercise
2).

A digraph is acyclic if it has no directed cycle. If a digraphD on n vertices
is acyclic, then we may label its vertices v1, v2, . . . , vn such that there is no
arc of the kind vj→vi where i < j (Exercise 1). Clearly the opposite is also
true: if D has an acyclic ordering, then D must be acyclic (all arcs go forward
with respect to the ordering).

A tournament is an orientation of a complete graph. It is easy to show
that up to isomorphism there is precisely one acyclic tournament on n ver-
tices (Exercise 3). We denote this by TTn and also call it the transitive

tournament on n vertices, because it has the property that if x→y and

3

y→z are arcs, then x→z is also an arc.

3 Sorting and acyclic partial orientations of

Kn

Given n distinct real numbers x1, x2, . . . , xn we can define a transitive tourna-
ment TTn = (V,A) where V = {x1, x2, . . . , xn} and A = {xi→xj : xi < xj}.
Thus we translate the property that xi < xj to an arc from xi to xj in
TTn. The tournament TTn is acyclic and has the property that if xi→xj

and xj→xk then we also have that xi→xk. In other words, the relation
R = {(xi, xj) : xi→xj ∈ A} is transitive. The proof of the following small
observation is left to the reader as Exercise 4.

Lemma 3.1 Let M = (V,A ∪ E) be obtained from the complete graph
Kn by orienting a subset A of the edges of Kn (the set E denotes those
edges which still have no orientation assigned to them). Let D = (V,A) be
the digraph consisting of all the vertices of V and the arcs A. Then one can
orient the edges in E such that the resulting tournament T = (V,A ∪ A′) is
acyclic (that is, it is isomorphic to TTn) if and only if D is acyclic (here A′

denotes the set of arcs we obtain by orienting the edges of E).

From the discussion above it follows that given any acyclic digraph D =
(V,A) with n vertices V = {v1, v2, . . . , vn} we can assign a set S of n distinct
real numbers x1, x2, . . . , xn (one for each vertex), with the property that
xi > xj if and only if there is no directed path from vi to vj in D. To
accomplish this, simply start from an acyclic ordering L of V (D) and let the
numbers in S be arbitrary distinct numbers which satisfy that xi > xj if and
only if vi is after vj in L. In particular, we may always chose S to be the set
{1, 2, . . . , n} (by associating the number i with the i’th vertex in L).

Thus we have shown that a partial orientation M = (V,A ∪ E) of the
complete graph Kn corresponds to one or more permutations of the numbers
1, 2, . . . , n if and only if the oriented part D = (V,A) is acyclic. It is also
clear that every permutation of {1, 2, . . . , n} can be realized in this way. We
will make use of these facts below by constructing partial orientations of
Kn which will always be acyclic and hence will correspond to some suitably
chosen permutation of {1, 2, . . . , n}.

4

Our arguments below concerning partial orientations D of Kn can be
translated to concrete inputs which will force the actual algorithm to perform
the postulated number of comparisons, simply by replacing the vertices of
D by the numbers 1, 2, . . . , n in such a way that the number xk (the k’th
number of the input) is assigned the value i precisely if the vertex vk ∈ V is
assigned the number (place) i in the current acyclic ordering L of D.

We denote by Q(x, y) the query which asks for a comparison of x and
y by the algorithm. We shall always “answer” such a query by assigning an
orientation to the edge xy of Kn. Since no optimal algorithm would compare
the same numbers twice, we may assume that x and y have not been com-
pared earlier by the algorithm, nor will they be so at a later stage of the
algorithm.

We will always use D to denote the actual oriented graph with n vertices
and those edges which have so far been oriented (that is in the beginning
when no edge has been oriented we have D = (V, ∅)) and we will let L(D)
denote the current acyclic ordering of D. Furthermore, we denote by LD(x)
the position of the vertex x in L(D) (that is, LD(x) = i if and only if x
is the i’th vertex in L(D)). The adversary will update L(D) as new arcs
are oriented so that at any time L(D) is an acyclic ordering of the current
digraph D.

4 Lower bound for finding both the maxi-

mum and the minimum element among n

numbers

The adversary will build a partial orientation of Kn which is always acyclic
by always answering the query Q(x, y) according to the following strategy.

1. If d+D(x) = 0 = d+D(y), then add the arc x→y to D if d−D(y) > 0 and
add the arc y→x to D if d−D(y) = 0.

2. If d+D(x) = 0 < d+D(y), then add the arc y→x to D.

3. If d+D(x) > 0 and either d+D(y) = 0, or d−D(x) = 0, then add the arc x→y
to D.

4. If d+D(x)d
−

D(x) > 0 and d+D(y) > 0, but d−D(y) = 0, then add the arc
y→x to D.

5

5. If d+D(x)d
−

D(x), d
+
D(y)d

−

D(y) > 0, the add the arc x→y to D if LD(x) <
LD(y) and otherwise add the arc y→x to D.

Lemma 4.1 If D is acyclic and the edge xy is oriented as above then the
resulting digraph is also acyclic.

Proof: Clearly it is enough to show the the new arc that is added cannot
be part of a cycle. In 1. the arc x→y cannot be part of a cycle as d+D(y) = 0.
The same argument shows that y→x cannot be part of a cycle in 2. In 3. we
either have d+D(y) = 0, or d−D(x) = 0, implying that the arc x→y cannot be
part of a cycle. In 4. the arc y→x cannot be part of a cycle as d−D(y) = 0.
Finally, in 5. we add the arc such that is goes forward with respect to the
acyclic ordering of D and hence the new arc cannot be part of a cycle. ⋄

Every algorithm for finding both the maximum and the minimum number
among n distinct numbers must obtain at least 2n− 2 units of information.
Namely, it has to exclude n−1 numbers from being the maximum and n−1
numbers from being the minimum among the n numbers. The only step in
which the adversary is forced to deliver 2 units of new information is when
rule 1. is applied and we have d−D(x) = d−D(y) = 0. When rules 2.-4. are
applied at most one unit of new information is given and when rule 5. is
applied no new information is given.

Theorem 4.2 Every algorithm which finds both the maximum and the
minimum element among n distinct numbers must perform at least ⌈3n/2⌉−2
comparisons.

Proof: Let A be an arbitrary algorithm for the problem. By orienting Kn

concurrently with the execution of A according to the rules above (which tell
the adversary which orientation to choose when A asks the query Q(x, y))
the adversary will deliver 2 pieces of new information (that is one of x and y
is excluded from being the maximum and the other from being the minimum)
at most ⌊n/2⌋ times. Thus in order for A to collect the required information
A must make at least 2n− 2− ⌊n/2⌋ = ⌈3n/2⌉ − 2 comparisons. ⋄

6

5 Lower bounds for finding the second smal-

lest element among n distinct numbers

Obviously the problem is precisely as difficult as that of finding the second
largest element among n distinct numbers. In the notes from Baase it is
shown that one can solve that problem using n+ ⌈log n⌉− 2 comparisons by
using the so-called tournament method (not to be confused with the mat-
hematical concept of a tournament). It can easily be seen that when we use
this method for finding the second smallest element, every element which has
only been compared with the final minimum element could potentially still
be the second smallest. Thus the adversary’s strategy will be to ensure that
the minimum element is compared with ⌈log n⌉ different numbers.

The adversary constructs an acyclic partial orientation of Kn, starting
from D = (V, ∅) by answering the queries of the form Q(x, y) as follows. The
adversary maintains a collection of disjoint out-arborescenses T1, T2, . . . , Tk.
Every vertex x for which we currently have d−D(x) = 0 is the root of one
of these arborescenses (we also denote this arborescence by T (x)). At the
beginning (when no edges have been oriented) every vertex is the root of
its own private out-arborescence which consists only of the vertex itself and
has no arcs. In order to distinguish between arcs which are part of an out-
arborescence and arcs which are not we partition the arc set of D into two
sets: black arcs corresponding to arcs in the arborescences and red arcs cor-
responding to the rest of the arcs of D (see Figure 1).

1. If d−D(x) = d−D(y) = 0 (that is x and y are both the roots of out-
arborescences), then add a black arc x→y toD if |V (T (x))| > |V (T (y))|
and otherwise add a black arc y→x to D.

2. If d−D(x) = 0 < d−D(y), then add a red arc x→y to D.

3. If d−D(y) = 0 < d−D(x), then add a red arc y→x to D.

4. If d−D(x), d
−

D(y) > 0, then add a red arc x→y to D if there is no directed
(y, x)-path in D and otherwise add a red arc y→x to D.

Lemma 5.1 If D is acyclic and the edge xy is oriented according to the
rules above, then the resulting digraph (obtained by adding the new arc to D)
is still acyclic and the black arcs form a forest of out-arborescences.

7

Figur 1: A time picture of the oriented graph D which is constructed by
the adversary. Dotted arcs correspond to red arcs and full arcs to black arcs.
There are currently 5 disjoint out-arborescenses with respectively 8,4,2,1 and
1 vertices.

Proof: The last claim follows from the fact that a new black arc will
always start in the root of a black out-arborescence to the root of another
one (implying that the later ceases being the root of an out-arborescence
and that the resulting out-arborescence contains all the vertices of the two
original out-arborescences). None of the rules 1.-3. can result in a cycle after
adding the new arc as the arcs will always start in a vertex z with d−D(z) = 0.
In rule 4. we orient in such a way that D plus the new arc that we add is
still acyclic (note that, as D was acyclic before we added the arc, either it
has no (x, y)-path or no (y, x)-path).

⋄

Theorem 5.2 By applying the above strategy the adversary will force any
comparison based algorithm B to use at least n+ ⌈log n⌉ − 2 comparisons in
order to determine the second smallest element.

Proof: Let B be an arbitrary comparison based algorithm for the pro-
blem. As long as a vertex x has d−D(x) = 0, x is a possible candidate for being
the minimum element and as soon as x has d−D(x) > 0, then x can no longer
be the minimum (according to the way we assign values to the element of D
upon termination of the algorithm). Hence when B terminates there will be
precisely one vertex x with d−D(x) = 0. It follows from the rules above that a
vertex z can only change from having d−D(z) = 0 to having d−D(z) > 0 when
a black arc is added into the vertex hence it follows (by induction) that the
unique vertex x which has d−D(x) = 0 when B terminates is precisely the root
of the resulting spanning out-arborescence which contains all n vertices of D.
All vertices in this out-arborescence which are children of x are candidates

8

for being the second smallest element after making all the comparisons cor-
responding to the black arcs. The follows from the fact that the only vertex
that can reach these (besides themselves) by a directed path using only black
arcs is x. Hence such a vertex can only be excluded from ending up at the
second place in the final acyclic ordering by having a red arc into it. Every
time a black arc is added, the size of the resulting black out-arborescence is
increased by at most a factor two (see rule 1.). Thus x has been the root
of at least ⌈log n⌉ different out-arborescenses during the execution of B and
hence x has at least ⌈log n⌉ children in the final out-arborescence.

It follows from rules 1.-4. that, at any time during the execution of B,
if z has a red arc into it, then z also has a black arc into it. In order to
ensure that only one of the children of x can be number two in the final
acyclic ordering at least t − 1 red arcs must be generated where t denotes
the number of children of x in the final out-arboresecence (which contains
precisely n − 1 black arcs at termination of B). Thus B must make at least
(n− 1) + (⌈logn⌉ − 1) = n + ⌈log n⌉ − 2 comparisons in order to determine
the second largest element. ⋄

6 A lower bound for the number of compari-

sons needed to find the median of n num-

bers

For simplicity we assume below that the numbers are all distinct and that n
is odd, implying that the median is unique.

Every algorithm for determining the median m among n distinct numbers
must determine, for each of the other n−1 numbers, whether they are smaller
or larger than the median. This must be accomplished either by a direct
comparison with the median or indirectly through a chain of comparisons.

Again the adversary will use partial orientations of Kn to force any al-
gorithm to perform many comparisons before the median is found. Observe
that if we already know that x < m < y, then the information x < y do-
es not help us find the median. We call such a comparison (of x and y) a
useless comparison. The aim of the adversary is to convey at much useless
information as possible while at the same time preserving consistency. This
is achieved by maintaining the acyclic orientation D such that as many que-

9

ries as possible can be answered by useless information while still preserving
consistency. Below we describe the adversary’s strategy.

At any time we maintain three sets S, L, U which form a partitioning of
V . These are defined by
S = {x ∈ V : dD(x) > 0 and LD(x) < (n + 1)/2},
L = {x ∈ V : dD(x) > 0 and LD(x) > (n+ 1)/2},
U = V − S − L.

Note that at the beginning we have U = V as no edges have been oriented
yet.

The adversary answers the query Q(x, y) according to the rules below with
the additional restriction that we must always have |S|, |L| ≤ (n−1)/2. If we
reach a point where |S| = (n− 1)/2 and |L| < (n− 1)/2, then all remaining
vertices z ∈ U except one are placed in L and are moved to the end of L(D).
Similarly if we reach a point where |L| = (n−1)/2 and |S| < (n−1)/2, then
all remaining vertices z ∈ U except one are placed in S and are moved to the
beginning of L(D). When only one vertex z is left in U the adversary moves
this element to position (n+1)/2 in the current acyclic ordering. This is the
element which will finally become the median (denoted m below). As of this
point m will remain on position number (n + 1)/2 in the acyclic ordering
until the algorithm terminates. Note also that the element m is considered
undefined until U becomes empty.

In order to be able to distinguish comparisons which are known to be
useless from (potentially) useful comparisons we denote the first ones by red
arcs and the others by black arcs.

1. If x, y ∈ U , then S := S + x, L := L + y, add a red arc x→y, move x
to position 1 and y to position n in the new acyclic ordering.

2. If x ∈ L and y ∈ U , then S := S + y, add a red arc y→x move y to
position 1 in the new acyclic ordering.

3. If x ∈ S and y ∈ U , then L := L + y, add a red arc x→y move y to
position n in the new acyclic ordering.

4. If y ∈ L and x ∈ U , then S := S + x, add a red arc x→y move x to
position 1 in the new acyclic ordering.

10

5. If y ∈ S and x ∈ U , then L := L + x, add a red arc y→x move x to
position n in the new acyclic ordering.

6. If x ∈ S, y ∈ L, then add a red arc x→y.

7. If x ∈ L, y ∈ S, then add a red arc y→x.

8. If LD(x) < LD(y) and x, y ∈ S +m, or x, y ∈ L+m, then add a black
arc x→y.

9. If LD(y) < LD(x) and x, y ∈ S +m, or x, y ∈ L+m, then add a black
arc y→x.

Note that in the last two rules we only allow x or y to equal m if we have
U = ∅ at this point.

Lemma 6.1 If D is acyclic and a new arc between x and y is oriented
according to the rules above and added to D then the resulting digraph is
acyclic and every red arc u→v satisfies LD(u) < (n+ 1)/2 < LD(v).

Proof: Exercise 7. ⋄

Figure 2 shows an example of the current digraph D at the time when
the median m has been found.

Theorem 6.2 By applying the above strategy the adversary will force eve-
ry comparison based algorithm C to perform at least 3n/2− 3/2 comparisons
before the median is determined among n distinct numbers.

Proof: Note that if D is an acyclic digraph with an acyclic ordering
L(D), where LD(x) < LD(y) and there is no directed path from x to y in
D, then L(D) can be changed into a new acyclic ordering in which y ap-
pears before x (Exercise 8). This implies that when C terminates there must
exist paths from x to m and from m to y in D for arbitrary x, y ∈ V (D)
such that LD(x) < (n + 1)/2 < LD(y). No red arc can be on such a path
as every red arc u→v satisfies LD(u) < (n + 1)/2 < LD(v) and all arcs of
D go forward with respect to L(D). This implies that every vertex x with
LD(x) < (n+1)/2 must have at least one black arc out of it and every vertex
y with LD(y) > (n + 1)/2 has at least one black arc into it. Thus there are
at least n− 1 black arcs since all arcs u→v with LD(u) < (n+1)/2 < LD(v)

11

m

Figur 2: A possible structure of D at the time when the median m has been
determined (that is it is the only possible candidate left). The dotted arcs
are red arcs and the others are black arcs. To ease visibility only a minimal
set of black arcs has been included

are red. At the same time at least (n − 1)/2 red arcs can be added by the
adversary since the rules 1.-7. may be applied at least (n− 1)/2 times (until
either |S| = (n− 1)/2, or |L| = (n− 1)/2). This shows that in total C must
perform at least n− 1 + (n− 1)/2 = 3n/2− 3/2 comparisons. ⋄

7 An Ω(n log n) lower bound for sorting by com-

parisons

Simplifying assumption: n = 2k for some natural number k.
The adversary maintains a full binary tree T of depth k = log n whose

vertices are bags of elements. Initially all but the root bag is empty. The root
bag contains the n elements to be sorted.

We assign levels to T so that the root is at level 0 and the leaves at level
k. There are precisely 2ℓ bags (vertices of T) at level ℓ. At any time during
the process the subtree T [b] of T rooted at a bag b at level ℓ contains at most
n
2ℓ

= 2k−ℓ elements and there are precisely n elements in T (so many bags
are empty).

During the run of the algorithm (where the adversary responds to the que-

12

ries one by one and in a consistent maner) the elements move down through
T until all n elements are in their own private bag of size 1 at level k− 1. At
this point the elements are sorted.

At any point during the exceution of the strategy a bag can be in one of
the following states open, right-flushed or left-flushed. Initially all bags
in T are open.

The adversary makes use of the following subroutines to perform his stra-
tegy.

• We denote by MOV E(u) the subroutine which whenever it is called
after an element u has arrived at a bag b′ does the following: If b′ is
open, u stays in b′ but if b′ is already marked right-flushed, respectively
left-flushed, the element u is moved one step down to root bag b′′ of the
right subtree, respectively left subtree and MOV E(u) is called again.
Hence, at any point during the run of the strategy an element may
move down by several levels.

• We denote by CHECK(b) the subroutine which for a given open bag
b checks whether either the right or left subtree T [b] of the bag b at
level ℓ contains 2k−ℓ−1 elements and if so marks the bag b left-flushed
respectively right-flushed and then calls MOV E on all elements in b
(they will all end up in the same bag when the recursion stops).

Here is the adversary’s strategy: while answering the queries of the algo-
rithm the adversary moves either 2, 1 or zero elements down in the tree with
one exception: After each move from a bag b we perform CHECK(b) which
could potentially move up to 2k−ℓ−1 elements from a bag b at level ℓ down
in T [b]. After each query which results in at least one element being moved,
the procedure MOV E is called recursively on the moved elements.

Assume the sorting algorithm A asks for the result of a comparison of u
and v. Let ℓ(u), ℓ(v) be the levels of u, v repectively and let b(u), b(v) be the
bags containing u and v respectively.

(1) If the least common ancestor b of b(u) and b(v) in T is distinct from
both b(u) and b(v), then answer ”u < v” if u is in the left subtree of
b and ”u > v” otherwise. No element is moved (this is a “useless”

comparison for A).

(2) If the least common ancestor b of b(u), b(v) is in {b(u), b(v)} then
w.l.o.g. b = b(u) (otherwise perform the analogous steps for b = b(v)).

13

(2a) If b(u) = b(v) then answer “u < v” and move u into the root of
left subtree of T [b] and v into the root of the right subtree of T [b];
perform MOVE(u), MOV E(v) and finally CHECK(b).

(2b) If b(u) 6= b(v) and b(v) is in the right subtree of b(u), then answer
u < v, move u into the root of the left subtree of T [b(u)] and
perform MOVE(u) and then CHECK(b).

(2c) If b(u) 6= b(v) and b(v) is in the left subtree of T [b(u)], then answer
u > v, move u into the root of the right subtree of T [b(u)] and
perform MOVE(u) and then CHECK(b).

Theorem 7.1 By following the stategy above, the adversary can force any
comparison based sorting algorithm A to perform Ω(n log n) comparisons.

Proof:

Recall that initially the root bag at level 0 contains all n elements and at
the end (when the permutation has been fixed) all elements reside in the leaf
bags at level k = log n. In between these two events every other bag becomes
non-empty and then empty again at least once. We shall show that we can
associate at least 2k−ℓ−1 comparisons made by the algorithm A privately to
each bag at level ℓ. This means that at least n/2 comparisons are associated
privately with each of the log n levels, implying that A makes Ω(n logn)
comparisons before the input is sorted.

Let b be any bag at level ℓ and let us show how to associate a set of
at least 2k−ℓ−1 private comparisons of A to b. These will be all comparisons
between elements u, v where at least one of the elements belongs to b and
the other to T [b] (and thus possibly also to b). This does indeed indentify
private comparisons for b so we just need to show that there are enough of
them. This follows from the fact that the only comparisons that cause one
or more elements to be moved out of b are those with u, v as above and the
bag b cannot be flushed until at least 2k−ℓ−1 elements have been moved into
either the right or the left subtree of b and this will require at least 2k−ℓ−1

comparisons of the type above. ⋄

Corollary 7.2 The adversary’s strategy can be performed in time O(n logn).

Proof: We may represent T virtually by denoting the 2ℓ bags at level ℓ
by bℓ,0, bℓ,1, . . . , bℓ,2ℓ−1 and keeping, for each element u two values ℓ(u) and

14

b(u), where 0 ≤ b(u) ≤ 2ℓ(u) − 1. If u is moved down one level into the
left (right) subtree of b(u) we just replace b(u) by 2b(u) (2b(u) + 1). Hence
moving an element down one level take constant time and since an element
will move down precisely log n levels this takes O(n logn) in total provided
each call toMOV E takes constant time. This can be accomplished by keeping
track, for each bag b whether b is open right-flushed or left-flushed. Similarly,
CHECK(b) takes constant time besides the work done by calls to MOV E
if we just keep two counters left(b), right(b) which keep track of the number
of elements in the left, respectively, the right subtree of T [b] and update
these (in constant time per update) when we move one element one level
down. What remains is how to test whether case (2b) or (2c) applies. This
can be done in constant time given b(u), b(v), ℓ(u), ℓ(v) we leave this to the
interested reader.

⋄

8 Exercises

1. Prove that if D = (V,A) is an acyclic digraph on n vertices, then we
may order its vertices v1, v2, . . . , vn so that there is no arc vj→vi where
i < j. Hint: Argue that D must have a vertex x with d−(x) = 0 and
use induction.

2. Let T be an out-arborescence with root r. Prove that T contains a
directed path from r to x for every vertex x of T . Hint: apply induction.

3. An isomorphism between two digraphs D = (V,A) and H = (V ′, A′)
is a mapping f : V→V ′ which is 1-1 and onto and which preserves
arcs, that is, if u→v ∈ A then f(u)→f(v) ∈ A′. Prove that any two
transitive tournaments on the same number of vertices are isomorphic.
Then derive a linear algorithm for finding such an isomorphism given
two transitive tournaments on n vertices.

4. Prove Lemma 3.1

5. Give an ordered set of comparisons which an algorithm B (for finding
the second smallest element among n) could perform and which would
result in the adversary constructing the digraph in Figure 1.

15

6. Argue that if B is the tournament method, described on page 129 in
the first part of these notes (Baase) then the adversary will generate
precisely ⌈logn⌉ − 1 red arcs.

7. Prove Lemma 6.1.

8. Suppose that D is an acyclic digraph with two vertices x, y such that
D contains no path from x to y. Let L(D) be an acyclic ordering of
D such that LD(x) < LD(y) . Prove that there exists another acyclic
ordering of D in which y is before x. Hint: it is not always enough just
to interchange the positions of x and y.

9. Find an acyclic ordering of the digraph Figure 2. Then describe a
sequence of comparisons that will result in the adversary constructing
precisely this digraph D.

10. Consider the representation used in the proof of Corollary 7.2 and ex-
plain how to test whether case (2b) or (2c) applies in constant time
given b(u), b(v), ℓ(u), ℓ(v)

11. Consider the adversary strategy that forces any algorithm for finding
the minimum and the second smallest element among n distinct num-
bers. Show that when the minimum element is determined, the span-
ning out-arborescence consisting of the black arcs (those that show that
the root is the smallest element) has at least n/2 leaves.

12. Consider again the adversary strategy that forces any algorithm for
finding the minimum and the second smallest element among n distinct
numbers. Show by induction over the number of red arcs added so far
that when answering a request Q(x, y) for which case 4. applies and y
is a leaf in the black out-tree to which it belongs but x is not a leaf
in the black out-tree to which it belongs (we consider a vertex which
a root of an out-tree with just one vertex to be a leaf of that tree) we
can always orient the new red arc so that it enters y.

13. Use the result in Exercise 12 to show that when the algorithm B for
which the adversary is constructing a bad input has determined the
minimum element (the root of a spanning black out-tree T is determi-
ned), every leaf of T is still a candidate to be the maximum element,
except if it has a red arc entering from another leaf in T .

